Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
J Pediatr ; 265: 113816, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37931699

ABSTRACT

OBJECTIVES: To assess postmortem vitamin A (VA) concentrations in children under 5 years of age and evaluate the association between VA deficiency (VAD) and infectious causes of death (CoD). STUDY DESIGN: In this cross-sectional study from the Child Health and Mortality Prevention Surveillance (CHAMPS) Network, liver biopsies collected within 72 hours of death were analyzed from 405 stillbirths and children under 5 years in Kenya and South Africa. Total liver VA (TLVA) concentrations were quantified using ultra-performance liquid chromatography, and cutoffs of ≤0.1 µmol/g, >0.1 to <0.7 µmol/g, ≥0.7 to <1.0 µmol/g, and ≥1.0 µmol/g were used to define VAD, adequate VA status, high VA, and hypervitaminosis A, respectively. CoD were determined by expert panel review. RESULTS: Among 366 liver samples with viable extraction, pooled prevalences of VAD, adequacy, high VA, and hypervitaminosis were 34.2%, 51.1%, 6.0%, and 8.7%, respectively. VAD was more common among neonates compared with stillbirths, infants, or children, and among those with low birthweight (LBW), underweight, or stunting (P < .05). When adjusting for site, age, and sex, there was no significant association of VAD with increased infectious CoD (OR 1.9, 95% confidence interval [CI] 0.9, 3.8, P = .073). In stratified analyses, VA deficient boys, but not girls, had an increased risk of infectious CoD (OR 3.4, 95% CI 1.3, 10.3, P = .013). CONCLUSIONS: Definitive postmortem assessment of VA status identified both VAD and VA excess among children under 5 years of age in Kenya and South Africa. VAD in boys was associated with increased risk of infectious mortality. Our findings may inform a transition from universal VA supplementation (VAS) to targeted strategies in certain countries.


Subject(s)
Communicable Diseases , Vitamin A Deficiency , Child , Male , Infant , Infant, Newborn , Female , Pregnancy , Humans , Child, Preschool , Vitamin A/adverse effects , Cross-Sectional Studies , Stillbirth , Vitamin A Deficiency/complications , Vitamin A Deficiency/epidemiology , Vitamins , Liver
2.
Nutrients ; 15(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38140344

ABSTRACT

Retinol in breast milk is related to plasma concentration among breastfeeding women, but the linear or curvilinear relationships between the two remains unclear. We conducted a cross-sectional study in 403 Chinese breastfeeding women at 42 ± 7 days postpartum. Plasma and breast milk samples were assayed using high performance liquid chromatography to determine the concentration of retinol. Partial Spearman correlation and multivariable fractional polynomial regression were used to examine the relationships between the two retinol concentrations and between plasma retinol concentration and milk-to-plasma (M/P) retinol. The median (interquartile range, IQR) of the retinol concentration in the plasma was 1.39 (1.21, 1.63) µmol/L and 1.15 (0.83, 1.49) µmol/L in the breast milk, respectively. The partial correlation coefficient between them was 0.17 (p < 0.01). A linear relationship was observed with an adjusted regression coefficient of 0.34 (95% CI: 0.19, 0.49). The relationship between the plasma retinol and M/P ratio was nonlinear and segmented at 1.00 µmol/L of plasma retinol. The regression coefficients, below and above the segmented point, were -1.69 (95% CI: -2.75, -0.62) and -0.29 (95% CI: -0.42, -0.16), respectively. Plasma and breast milk retinol were positively correlated, whereas women with a low concentration of plasma retinol showed a stronger capacity of transferring retinol to breast milk.


Subject(s)
Milk, Human , Vitamin A , Female , Humans , Milk, Human/chemistry , Breast Feeding , Cross-Sectional Studies , Correlation of Data , Lactation
3.
Nutr Metab (Lond) ; 20(1): 49, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974246

ABSTRACT

BACKGROUND: Serum retinol (SR) and retinol-binding protein (RBP) are commonly used indicators, but they are affected by infections and inflammation. This study aimed to assess the sensitivity and specificity of VA indicators to detect vitamin A deficiency (VAD) in 36-59-month-old children living in a rural area in Burkina Faso. METHODS: In a community-based study, two cross-sectional surveys were carried out from November 2016 to September 2017 in the health district of Dandé in Burkina Faso. The surveys included 115 children 36-59 months old. Indicators of VA and inflammation assessed in all children included SR, RBP and total liver VA reserves (TLR) estimated by retinol isotope dilution, and inflammation markers (C-reactive protein (CRP) and alpha 1-acid glycoprotein (AGP)). We calculated the sensitivity, specificity, positive and negative predictive values. In addition, the effects of inflammation, helminth infection, and season on sensitivity and specificity were assessed. RESULTS: The prevalence of VAD assessed by SR (< 0.7 µmol/L), RBP (< 0.7 µmol/L), and TLR (< 0.1 µmol/g liver) were, respectively, 30.9%, 33.3%, and 0%. Compared to TLR, the specificity, positive predictive value, and negative predictive value of SR were 71.1%, 0%, and 100%, and of RBP, were 68.9%, 0%, and 100%, respectively. The sensitivity was indeterminable for SR and RBP. The specificity of SR and RBP was lower during the dry season. Elevated CRP (> 5.0 mg/L) and AGP (> 1.0 g/L) were detected in 1.9% and 28.6% of children, respectively. The adjustment of VA indicators for inflammation improved SR's specificity to 75.9% and decreased RBP's specificity to 67.8%. CONCLUSION: No cases of VAD were identified by TLR. However, (inflammation-adjusted) SR and RBP had varying accuracy in the estimation of VAD. TRIAL REGISTRATION: The study was registered, retrospectively, on 22 March 2018 as a clinical trial with the Pan African Clinical Trials Registry under the number Cochrane South Africa; PACTR201803002999356.

4.
Int J Vitam Nutr Res ; 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37335576

ABSTRACT

The mass ratio of urinary 2-hydroxyestrone to 16-α-hydroxyestrone (2:16) is hypothesized as a biomarker of breast cancer risk in premenopausal women, with higher ratios being theoretically protective. Cruciferous vegetable intake has been associated with higher urinary 2:16 in some studies. We investigated whether a whole-food supplement made from dried Brussels sprouts and kale would increase urinary 2:16 in comparison with placebo or cruciferous vegetables in women. This randomized, parallel arm, placebo-controlled, partly blinded study included 78 healthy premenopausal women (38-50 y) with screening urinary 2:16 ≤3.0. Subjects received either six capsules containing 550 mg dried Brussels sprouts and kale per capsule, 40 g daily alternating broccoli or Brussels sprouts, or placebo for eight weeks. Urinary 2:16 and creatinine were measured at baseline, four, and eight weeks. Intent-to-treat repeated measures-ANOVA with multiple imputation (n=100) for missing values identified no treatment effect (P=0.9) or treatment-by-time interaction (P=0.6); however, a significant time effect was noted (P=0.02). Per-protocol analyses including complete cases found no treatment effect (P=1) or treatment-by-time interaction (P=0.6); however, the significant time effect remained (P=0.03). Restricting analysis to subjects with >80% compliance maintained the time effect (P=0.02). Using Pearson correlations, android-pattern and android:gynoid fat were predictive of change (P≤0.05). In conclusion, neither cruciferous supplements nor an added vegetable serving altered urinary 2:16 in premenopausal women with eight weeks treatment. This ratio did vary with time, which is important for designing future trials.

5.
J Nutr ; 153(8): 2263-2273, 2023 08.
Article in English | MEDLINE | ID: mdl-37354977

ABSTRACT

BACKGROUND: Niacin-derived nicotinamide adenine dinucleotide is an essential cofactor for many dehydrogenase enzymes involved in vitamin A (VA) metabolism. Several countries with high prevalence of VA deficiency rely on maize, a poor source of available niacin, as a dietary staple. OBJECTIVES: This study evaluated the interaction of dietary niacin on VA homeostasis using male Sprague-Dawley rats, aged 21 d (baseline body weight 88.3 ± 6.6 g). METHODS: After 1 wk of acclimation, baseline samples were collected (n = 4). Remaining rats (n = 54) were split into 9 groups to receive low tryptophan, VA-deficient feed with 3 different amounts of niacin (0, 15, or 30 mg/kg) and 3 different oral VA doses (50, 350, or 3500 nmol/d) in a 3 × 3 design. After 4 wk, the study was terminated. Serum, livers, and small intestine were analyzed for retinoids using high-performance liquid chromatography. Niacin and metabolites were evaluated with nuclear magnetic resonance. Plasma pyridoxal-P (PLP) was measured with high-performance liquid chromatography. RESULTS: Niacin intake correlated with serum retinol concentrations (r = 0.853, P < 0.001). For rats receiving the highest VA dose, liver retinol concentrations were lower in the 30-mg/kg niacin group (5.39 ± 0.27 µmol/g) than those in the 0-mg/kg and 15-mg/kg groups (9.18 ± 0.62 and 8.75 ± 0.07 µmol/g, respectively; P ≤ 0.05 for both). This phenomenon also occurred in the lower VA doses (P ≤ 0.05 for all). Growth and tissue weight at endline were associated with niacin intake (P ≤ 0.001 for all). Plasma PLP correlated with estimated niacin intake (r = 0.814, P < 0.001). CONCLUSIONS: Optimal niacin intake is associated with lower liver VA and higher serum retinol and plasma PLP concentrations. The extent to which vitamin B intake affects VA homeostasis requires further investigation to determine if the effects are maintained in humans.


Subject(s)
Niacin , Vitamin A Deficiency , Humans , Male , Rats , Animals , Vitamin A , Rats, Sprague-Dawley , Liver/metabolism
6.
J Nutr ; 153(1): 76-87, 2023 01.
Article in English | MEDLINE | ID: mdl-36913481

ABSTRACT

BACKGROUND: Anthocyanins and carotenoids are phytochemicals that may benefit health through provitamin A carotenoid (PAC), antioxidant, and anti-inflammatory activities. These bioactives may mitigate chronic diseases. Consumption of multiple phytochemicals may impact bioactivity in synergistic or antagonistic manners. OBJECTIVES: Two studies in weanling male Mongolian gerbils assessed the relative bioefficacy of ß-carotene equivalents (BCEs) to vitamin A (VA) with simultaneous consumption of the non-PAC lycopene or anthocyanins from multicolored carrots. METHODS: After 3-wk VA depletion, 5-6 gerbils were killed as baseline groups. The remaining gerbils were divided into 4 carrot treatment groups; the positive control group received retinyl acetate and the negative control group was given vehicle soybean oil (n = 10/group; n = 60/study). In the lycopene study, gerbils consumed feed varying in lycopene sourced from red carrots. In the anthocyanin study, gerbils consumed feed varying in anthocyanin content sourced from purple-red carrots, and positive controls received lycopene. Treatment feeds had equalized BCEs: 5.59 ± 0.96 µg/g (lycopene study) and 7.02 ± 0.39 µg/g (anthocyanin study). Controls consumed feeds without pigments. Serum, liver, and lung samples were analyzed for retinol and carotenoid concentrations using HPLC. Data were analyzed by ANOVA and Tukey's studentized range test. RESULTS: In the lycopene study, liver VA did not differ between groups (0.11 ± 0.07 µmol/g) indicating no effect of varying lycopene content. In the anthocyanin study, liver VA concentrations in the medium-to-high (0.22 ± 0.14 µmol/g) and medium-to-low anthocyanin (0.25 ± 0.07 µmol/g) groups were higher than the negative control (0.11 ± 0.07 µmol/g) (P < 0.05). All treatment groups maintained baseline VA concentrations (0.23 ± 0.06 µmol/g). Combining studies, serum retinol had 12% sensitivity to predict VA deficiency, defined as 0.7 µmol/L. CONCLUSIONS: These gerbil studies suggested that simultaneous consumption of carotenoids and anthocyanins does not impact relative BCE bioefficacy. Breeding carrots for enhanced pigments to improve dietary intake should continue.


Subject(s)
Daucus carota , beta Carotene , Animals , Male , Vitamin A , Daucus carota/chemistry , Anthocyanins/pharmacology , Lycopene , Gerbillinae , Carotenoids
7.
J Nutr ; 153(3): 622-635, 2023 03.
Article in English | MEDLINE | ID: mdl-36931745

ABSTRACT

BACKGROUND: Vitamin A (VA) assessment is important for targeting public health programs. Retinol isotope dilution (RID) is a sensitive method to estimate total body VA stores (TBSs) and total liver reserves (TLRs), but the impact of subclinical inflammation on RID is unclear. OBJECTIVE: We determined the association between TBSs and TLRs, estimated by RID, and inflammation among preschool children without clinical infection in Burkina Faso, Cameroon, Ethiopia, South Africa, and Tanzania. METHODS: Five studies (n = 532; 47.9 ± 8.3 mo; 49.0% male) included 13C-RID and measurement of inflammation markers, CRP, and α1-acid glycoprotein (AGP). Spearman correlations were used to evaluate TBSs and TLRs with inflammation biomarkers. Wilcoxon and Kruskal-Wallis tests were used to compare TBSs and TLRs by inflammation categories [normal vs. elevated CRP (>5 mg/L) or AGP (>1 g/L)] and inflammation stage [reference, incubation (elevated CRP), early convalescence (elevated CRP and AGP), and late convalescence (elevated AGP)]. RESULTS: Complete data were available for 439 children. Median (Q1, Q3) TLRs ranged from 0.12 (0.07, 0.18) µmol/g in Ethiopia to 1.10 (0.88, 1.38) µmol/g in South Africa. Elevated CRP ranged from 4% in Burkina Faso to 42% in Cameroon, and elevated AGP from 20% in Tanzania to 58% in Cameroon. Pooled analysis (excluding Cameroon) showed a negative correlation between TBSs and AGP (ρ = -0.131, P = 0.01). Children with elevated AGP had higher probability of having lower TBSs (probability = 0.61, P = 0.002). TBSs differed among infection stages (P = 0.020). Correlations between TLRs and CRP or AGP were not significant. CONCLUSIONS: No indication of systematic bias in RID-estimated TLRs was found due to subclinical inflammation among preschool children. The inverse relationship between TBSs and AGP may reflect decreased stores after infection or an effect of inflammation on isotope partitioning. Further research should investigate potential confounding variables to improve TBS-estimate validity.


Subject(s)
Vitamin A Deficiency , Vitamin A , Humans , Male , Child, Preschool , Female , Convalescence , Inflammation , Biomarkers , Liver/chemistry , Isotopes , South Africa , Orosomucoid/analysis
8.
J Nutr ; 153(4): 949-957, 2023 04.
Article in English | MEDLINE | ID: mdl-36822237

ABSTRACT

BACKGROUND: Stable isotope techniques using 13C to assess vitamin A (VA) dietary sources, absorption, and total body VA stores (TBSs) require determination of baseline 13C abundance. 13C-natural abundance is approximately 1.1% total carbon, but varies with foods consumed, supplements taken, and food fortification with synthetic retinyl palmitate. OBJECTIVES: We determined 13C variation from purified serum retinol and the resulting impact on TBSs using pooled data from preschool children in Burkina Faso, Cameroon, Ethiopia, South Africa, Tanzania, and Zambia and Zambian women. METHODS: Seven studies included children (n = 639; 56 ± 25 mo; 48% female) and one in women (n = 138; 29 ± 8.5 y). Serum retinol 13C-natural abundance was determined using GC-C-IRMS. TBSs were available in 7 studies that employed retinol isotope dilution (RID). Serum CRP and α1-acid-glycoprotein (AGP) were available from 6 studies in children. Multivariate mixed models assessed the impact of covariates on retinol 13C. Spearman correlations and Bland-Altman analysis compared serum and milk retinol 13C and evaluated the impact of using study- or global-retinol 13C estimates on calculated TBSs. RESULTS: 13C-natural abundance (%, median [Q1, Q3]) differed among countries (low: Zambia, 1.0744 [1.0736, 1.0753]; high: South Africa, 1.0773 [1.0769, 1.0779]) and was associated with TBSs, CRP, and AGP in children and with TBSs in women. 13C-enrichment from serum and milk retinol were correlated (r = 0.52; P = 0.0001). RID in children and women using study and global estimates had low mean bias (range, -3.7% to 2.2%), but larger 95% limits of agreement (range, -23% to 37%). CONCLUSIONS: 13C-natural abundance is different among human cohorts in Africa. Collecting this information in subgroups is recommended for surveys using RID. When TBSs are needed on individuals in clinical applications, baseline 13C measures are important and should be measured in all enrolled subjects.


Subject(s)
Vitamin A Deficiency , Vitamin A , Humans , Female , Child, Preschool , Male , Diet , Vitamin A Deficiency/epidemiology , Dietary Supplements , Isotopes , Zambia
10.
J Nutr ; 152(12): 2699-2707, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36178059

ABSTRACT

BACKGROUND: In Tanzania, some districts have single vitamin A (VA) interventions and others have multiple interventions. There is limited information on total liver VA reserves (TLRs) among preschool children (PSC) in Tanzania. OBJECTIVES: We assessed total body VA stores (TBSs) and TLRs among PSC living in 2 districts with low and high exposures to VA interventions using 13C-retinol isotope dilution. METHODS: A cross-sectional, health facility-based study was conducted in 2 districts with access to VA supplementation only (low exposure to VA interventions) or multiple interventions (high exposure to VA interventions) to determine TLRs in 120 PSC aged 36-59 months. A questionnaire was used to collect data. Height and weight were measured, and the prevalence of undernutrition was based on z-scores. Blood samples were collected for measurement of TBSs, TLRs, retinol, biomarkers of infection and inflammation, and hemoglobin. 13C2-retinyl acetate (1.0 µmol) was administered to each child after blood collection, and the second sample was taken 14 days later. Serum was analyzed with HPLC and gas chromatography-combustion-isotope ratio mass spectrometry. Mann-Whitney U test was used to compare medians of nonnormally distributed variables. Pearson χ2 test was used to assess associations between 2 categorical variables. RESULTS: Median TBSs differed between PSC from low-exposure (196 µmol; IQR, 120 µmol) and high-exposure (231 µmol; IQR, 162 µmol) intervention areas (P = 0.015). Median TLRs were 0.23 µmol/g liver (IQR, 0.14 µmol/g liver) and 0.26 µmol/g liver (IQR, 0.16 µmol/g liver) from low- and high-exposure areas, respectively, which did not significantly differ (P = 0.12). Prevalences of VA deficiency (VAD; ≤0.1 µmol/g liver) were 6.3% and 1.7% for PSC from low- and high-exposure areas, respectively. There was no significant difference in VAD (P = 0.25). No child had hypervitaminosis A (≥1.0 µmol/g liver). CONCLUSIONS: TLRs in Tanzanian PSC from 2 districts did not differ between low and high exposures to VA interventions. The majority had adequate VA stores. VAD in the study area presented a mild public health problem.


Subject(s)
Vitamin A Deficiency , Vitamin A , Humans , Child, Preschool , Tanzania/epidemiology , Cross-Sectional Studies , Vitamin A Deficiency/epidemiology , Liver , Carbon Isotopes
11.
J Nutr ; 152(12): 2689-2698, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36170963

ABSTRACT

BACKGROUND: Measuring vitamin A (VA) status during lactation is required to inform dietary recommendations. Limited data exist on VA stores in women. OBJECTIVES: Our objective was to assess VA status in lactating Thai women by measuring total body VA stores (TBSs), serum and breast milk retinol concentrations, and dietary intake. METHODS: Lactating women (n = 94), 6-8 wk postpartum, were enrolled from rural (Ayutthaya) and urban (Bangkok) areas. TBSs were measured by the 13C-retinol isotope dilution (RID) technique using 2.0 µmol 13C-retinyl acetate and a single blood sample 14 d post-dose. Natural 13C-enrichment was determined in nonenrolled women (n = 11). Estimated total liver VA reserves (TLRs) were determined using assumptions for lactation. Serum, foremilk, and hindmilk samples were analyzed for retinol by HPLC. Dietary VA intake was assessed by FFQ and 24-h dietary recalls for 3 d. Multiple regression and Pearson correlation were used to evaluate relations. RESULTS: Median VA intakes were 51.8% of 2003 Thai daily recommendations for lactating women, with the majority from animal-source foods. Many women in Ayutthaya consumed liver weekly. Considering TLRs as 50% TBS, 20% and 11% of mothers in Ayutthaya and Bangkok, respectively, showed deficient reserves (≤0.10 µmol retinol/g). Median (quartile 1, quartile 3) serum [1.58 (1.34, 1.91) and 1.52 (1.30, 1.70) µmol/L] and milk [1.88 (1.29, 2.95) and 1.74 (0.96, 2.26) µmol/L] retinol in Ayutthaya and Bangkok, respectively, were normal. Women with deficient TLRs showed low milk retinol concentrations (≤1.0 µmol/L) and consumed less dietary VA, especially from animal-source foods. Breast milk retinol concentrations, especially hindmilk, demonstrated strong correlation with TBSs and TLRs estimated from the RID test. CONCLUSIONS: Approximately 15% of Thai lactating women had deficient TLRs. Breast milk retinol concentrations in conjunction with dietary intake records show potential to screen mothers at risk of VA deficiency to guide interventions.The Thai Clinical Trials Registry number is TCTR20160824001 for the work in Thailand.


Subject(s)
Vitamin A Deficiency , Vitamin A , Humans , Animals , Female , Milk, Human/chemistry , Lactation , Thailand , Dietary Exposure , Southeast Asian People , Liver/chemistry
12.
J Nutr ; 152(6): 1582-1591, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35259277

ABSTRACT

BACKGROUND: Retinol isotope dilution (RID) estimates total liver vitamin A reserves (TLRs), the gold-standard vitamin A (VA) biomarker. RID equation assumptions are based on limited data. OBJECTIVES: We measured the impact of tracer choice, mixing period, and VA intake on tracer mixing [ratio of tracer enrichment in serum to that in liver stores (S)] in VA-deficient, -adequate, and hypervitaminotic rats. METHODS: Study 1 was a 3 × 2 × 3 design (18 groups, n = 5/group). Male Sprague-Dawley rats (21 d old) received 50, 100, or 3500 nmol VA/d for 21 d, were administered 52 nmol 13C2- or 13C10-retinyl acetate orally, and killed 5, 10, or 15 d later. Unlabeled VA (50 nmol/d) was given on days 11-14. Study 2 used 100 nmol VA/d for 21 d with 3 groups (n = 6-7): 52 nmol 13C2- or 13C10-retinyl acetate and 100 nmol VA/d throughout 14-d mixing, or 13C2-retinyl acetate without VA. Repeated-measures, 1-factor, and 3-factor ANOVAs were used for analysis. RESULTS: Mean ± SD TLRs (µmol/g liver) reflected intake: 0.11 ± 0.04 (50 nmol VA/d), 0.16 ± 0.04 (100 nmol VA/d), and 5.07 ± 1.58 (3500 nmol VA/d) in Study 1 and 0.24 ± 0.08 (100 nmol VA/d) in Study 2. In Study 1, mean ± SD S was 1.65 ± 0.26 (5 d), 1.16 ± 0.09 (10 d), and 0.92 ± 0.08 (15 d). The interactions tracer*VA intake and time*VA intake were significant between days 10 and 15 (P < 0.05). In Study 2, mean ± SD S was 1.07 ± 0.02 without VA during mixing, and 0.81 ± 0.04 (13C2) and 0.79 ± 0.03 (13C10) with VA intake throughout. Estimated:measured TLRs varied by VA intake and time in Study 1 but not between groups in Study 2. CONCLUSIONS: The 13C-content effect on RID through S is inconsistent. S is highly variable at 5 d, contraindicating early-time point RID. VA intake effects on S vary with timing and quantity. Assuming S = 0.8 at 14 d with consistent VA intake in human studies is likely appropriate.


Subject(s)
Vitamin A Deficiency , Vitamin A , Animals , Carbon Isotopes , Liver , Male , Rats , Rats, Sprague-Dawley
13.
Am J Clin Nutr ; 115(4): 1059-1068, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35030234

ABSTRACT

BACKGROUND: Excessive vitamin A (VA) can cause bone resorption and impair growth. Government-mandated VA supplementation (VAS) and adequate intake through dietary fortification and liver consumption led to excessive VA in South African children. OBJECTIVES: We evaluated the relation between VAS and underlying hypervitaminosis A assessed by retinol isotope dilution (RID) with measures of growth and bone turnover in this cohort. METHODS: Primary outcomes in these children (n = 94, 36-60 mo) were anthropometric measurements [height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) z scores], serum bone turnover markers [C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (P1NP)], and inflammation defined as C-reactive protein (CRP; ≥5 mg/L) and/or α1-acid glycoprotein (AGP; ≥1 g/L). VA status was previously measured by RID-estimated total body VA stores (TBSs) and total liver VA reserves (TLRs), and serum retinol and carotenoid concentrations, before and 4 wk after children were administered 200,000 IU VAS. Serum 25-hydroxyvitamin D3 was measured by ultra-performance LC. RESULTS: In this largely hypervitaminotic A cohort, HAZ, WAZ, and WHZ were negatively associated with increasing TLRs, where TLRs predicted 6-10% of the variation before VAS (P < 0.05), increasing to 14-19% 4 wk after VAS (P < 0.01). Bone resorption decreased after VAS (P < 0.0001), whereas formation was unaffected. Neither CTX nor P1NP were correlated with TLRs at either time. Serum carotenoids were low. One child at each time point was vitamin D deficient (<50 nmol/L). CRP and AGP were not associated with growth measurements. CONCLUSIONS: Excessive TLRs due to dietary VA intake and VAS are associated with lower anthropometric measures and bone resorption decreased after supplementation. VA supplementation programs should monitor VA status with biomarkers sensitive to TLRs to avoid causing negative consequences in children with hypervitaminosis A. This trial is registered at clinicaltrials.gov as NCT02915731.


Subject(s)
Hypervitaminosis A , Vitamin A Deficiency , Child, Preschool , Diet , Humans , South Africa , Vitamin A
14.
Eur J Nutr ; 61(3): 1561-1570, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34860270

ABSTRACT

PURPOSE: To examine plasma retinol status and its determinants in Chinese pregnant or lactating women. METHODS: A cross-sectional study involving 1211 healthy women in mid-pregnancy, late pregnancy, or lactation was conducted in northern, central, and southern China. Plasma retinol concentration was determined by high-performance liquid chromatography. Multivariate quantile regression or modified Poisson regression was used to estimate adjusted medians, or to examine the associations of suboptimal retinol concentration (< 1.05 µmol/L) with various factors. RESULTS: The overall median (interquartile range) retinol concentration was 1.25 (1.06-1.46) µmol/L. The adjusted concentration was higher in women at lactation (1.39 [1.20-1.63] µmol/L) and mid-pregnancy (1.26 [1.10-1.44] µmol/L) than late pregnancy (1.07 [0.92-1.28] µmol/L), and higher in women in the central area (1.34 [1.18-1.49] µmol/L) and the north (1.26 [1.10-1.43] µmol/L) than the south (1.19 [1.07-1.31] µmol/L). The retinol concentration was more likely to be low in women with lower pre-pregnancy BMI, younger age, less education, and in lactating women who had a caesarean birth or were breastfeeding exclusively. A total of 290 (24.0%) women had a suboptimal retinol concentration, and the prevalence was higher in women at late pregnancy, residing in the south, with younger age, and having underweight pre-pregnancy. CONCLUSION: About one-fourth of pregnant or lactating women in China had suboptimal retinol concentrations that varied with phases of pregnancy and lactation, region of residence, and socio-demographic characteristics, indicating a need for population-specific public health strategies to optimize vitamin A status.


Subject(s)
Lactation , Vitamin A , China/epidemiology , Cross-Sectional Studies , Female , Health Status , Humans , Nutritional Status , Pregnancy
15.
Curr Dev Nutr ; 5(8): nzab098, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386690

ABSTRACT

BACKGROUND: Serum retinol and retinol-binding protein (RBP) concentrations are commonly used biomarkers of vitamin A deficiency (VAD); however, evidence indicates that they are not always accurate, especially in populations with high exposure to inflammation. OBJECTIVE: The aim was to assess sensitivity and specificity of serum retinol and RBP concentrations to predict VAD, with and without adjustment for inflammation (using categorical and regression-adjusted approaches), using the modified relative dose-response (MRDR) as the reference standard for liver reserves. METHODS: This secondary analysis of diagnostic accuracy used inflammation and RBP data and analyzed serum retinol and MRDR from a subsample of women of reproductive age (n = 178) and preschool children (n = 166) in the cross-sectional 2017 Ghana Micronutrient Survey. RESULTS: Inflammation (elevated C-reactive protein and/or α1-acid glycoprotein) was present in 41% of children and 16% of women. Among children, estimates of VAD prevalence were as follows: 7% (MRDR), 40% (serum retinol), 29% (categorical-adjusted serum retinol), 24% (RBP), 13% (categorical-adjusted RBP), and 7% (regression-adjusted RBP). Sensitivity (95% CI) ranged from 22.2% (2.81%, 60.0%; both adjusted RBPs) to 80.0% (44.4%, 97.5%; serum retinol), whereas specificity ranged from 63.3% (54.7%, 71.3%; serum retinol) to 93.5% (88.0%, 97.0%; regression-adjusted RBP). Among women, VAD prevalence ranged from 1% (RBP) to 4% (all others); sensitivity was 0% and specificity was >96% for all indicators. CONCLUSIONS: Serum retinol and RBP had varying accuracy in estimating VAD, especially in children; adjustment for inflammation increased accuracy by increasing specificity at the expense of sensitivity. Effects of inflammation adjustment in the context of high inflammation and VAD prevalence need to be further explored. Especially in populations with high inflammation, the MRDR test should accompany serum retinol or RBP measurements in a subsample of subjects in population-based surveys. This trial was registered with the Open Science Framework registry (doi: 10.17605/OSF.IO/J7BP9).

16.
Am J Clin Nutr ; 114(1): 392-393, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34196351
18.
Exp Biol Med (Maywood) ; 246(9): 1045-1053, 2021 05.
Article in English | MEDLINE | ID: mdl-33765844

ABSTRACT

Vitamin A is a fat-soluble vitamin involved in essential functions including growth, immunity, reproduction, and vision. The vitamin A Dietary Reference Intakes (DRIs) for North Americans suggested that a minimally acceptable total liver vitamin A reserve (TLR) is 0.07 µmol/g, which is not explicitly expressed as a vitamin A deficiency cutoff. The Biomarkers of Nutrition for Development panel set the TLR cutoff for vitamin A deficiency at 0.1 µmol/g based on changes in biological response of several physiological parameters at or above this cutoff. The criteria used to formulate the DRIs include clinical ophthalmic signs of vitamin A deficiency, circulating plasma retinol concentrations, excretion of vitamin A metabolites in the bile, and long-term storage of vitamin A as protection against vitamin A deficiency during times of low dietary intake. This review examines the biological responses that occur as TLRs are depleted. In consideration of all of the DRI criteria, the review concludes that induced biliary excretion and long-term vitamin A storage do not occur until TLRs are >0.10 µmol/g. If long-term storage is to continue to be part of the DRI criteria, vitamin A deficiency should be set at a minimum cutoff of 0.10 µmol/g and should be set higher during times of enhanced requirements where TLRs can be rapidly depleted, such as during lactation or in areas with high infection burden. In population-based surveys, cutoffs are important when using biomarkers of micronutrient status to define the prevalence of deficiency and sufficiency to inform public health interventions. Considering the increasing use of quantitative biomarkers of vitamin A status that indirectly assess TLRs, i.e. the modified-relative-dose response and retinol-isotope dilution tests, setting a TLR as a vitamin A deficiency cutoff is important for users of these techniques to estimate vitamin A deficiency prevalence. Future researchers and policymakers may suggest that DRIs should be set with regard to optimal health and not merely to prevent a micronutrient deficiency.


Subject(s)
Liver/metabolism , Vitamin A Deficiency/diagnosis , Vitamin A/analysis , Biomarkers/metabolism , Humans , Liver/chemistry , Reference Values , Vitamin A/metabolism
19.
Am J Clin Nutr ; 113(5): 1372-1380, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33675342

ABSTRACT

BACKGROUND: Lactating women are at increased risk for vitamin A (VA) deficiency due to demands for breast milk content and limited hepatic stores for women in some countries. Previously, consumption of triple-fortified rice, which included VA, iron, and zinc, successfully improved the VA status of Thai children in whom their total body VA stores (TBSs) were doubled in 2 mo. OBJECTIVE: This study assessed the efficacy of consuming VA-fortified rice, which delivered 500 µg retinol activity equivalents (RAEs)/d, on TBSs and estimated total liver VA reserves (TLRs) in Thai lactating women using the retinol isotope dilution (RID) test. METHODS: A randomized controlled trial was conducted with 70 lactating women (n = 35/group) who received either VA-fortified rice (500 µg RAEs/d) or unfortified rice for 14 wk on weekdays only. Serum retinol concentrations (SRs), C-reactive protein, and TBSs were assessed before and after the intervention. The paired 13C-RID test was used to measure TBSs. After a baseline blood sample, 2.0 µmol [14,15]-13C2-retinyl acetate was administered orally. A follow-up blood sample was drawn 14 d later. The RID test was repeated after the intervention. RESULTS: TBSs increased significantly (P < 0.05) in the intervention group from 240 (182, 316) to 331 (251, 447) [geometric means (95% CIs)] µmol retinol, and this change in TBSs was significantly higher (P < 0.05) than that in the control group [+52.9 (-74, 453) compared with -4.3 (-106, 275) µmol retinol]. Estimated TLRs indicated a high prevalence of VA deficiency among these lactating women. Initial and final SRs did not differ by group and did not change over the course of the intervention. CONCLUSION: VA-fortified rice improved the VA status of lactating women by increasing TBSs. A targeted approach to disseminate VA interventions among vulnerable groups should be considered in some contexts. This trial was registered at clinicaltrials.gov as NCT03056625.


Subject(s)
Food, Fortified , Oryza/chemistry , Oryza/genetics , Vitamin A/genetics , Vitamin A/metabolism , Adult , Double-Blind Method , Female , Humans , Iron , Lactation , Thailand , Young Adult , Zinc
20.
Am J Clin Nutr ; 113(4): 854-864, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33751046

ABSTRACT

BACKGROUND: Reduction of vitamin A deficiency (VAD) in Malawi coincided with introduction of vitamin A-fortified staple foods, alongside continued biannual high-dose vitamin A supplementation (VAS). OBJECTIVE: We describe coverage of vitamin A interventions and vitamin A status in the 2015-2016 Malawi Micronutrient Survey. METHODS: Food samples and biospecimens were collected within a representative household survey across 105 clusters. Retinol was measured using ultraviolet excitation fluorescence (sugar) and photometric determination (oil). Preschool children (PSC, aged 6-59 mo, n = 1102), school-age children (SAC, aged 5-14 y, n = 758), nonpregnant women (n = 752), and men (n = 219) were initially assessed for vitamin A status using retinol binding protein (RBP) and modified relative dose response (MRDR). Randomly selected fasted MRDR participants (n = 247) and nonfasted women and children (n = 293) were later assessed for serum retinol, retinyl esters, and carotenoids. Analyses accounted for complex survey design. RESULTS: We tested sugar and oil samples from 71.8% and 70.5% of the households (n = 2,112), respectively. All of the oil samples and all but one of the sugar samples had detectable vitamin A. National mean retinol sugar and oil contents were 6.1 ± 0.7 mg/kg and 6.6 ± 1.4 mg/kg, respectively. Receipt of VAS in the previous 6 mo was reported by 68.0% of PSC. VAD prevalence (RBP equivalent to <0.7µmol retinol/L) was 3.6% in PSC, and <1% in other groups. One woman and no children had MRDR ≥0.060 indicating VAD. Among fasted PSC and SAC, 18.0% (95% CI: 6.4, 29.6) and 18.8% (7.2, 30.5) had >5% of total serum vitamin A as retinyl esters, and 1.7% (0.0, 4.1) and 4.9% (0.0, 10.2) had >10% of total serum vitamin A as retinyl esters. Serum carotenoids indicated recent intake of vitamin A-rich fruits and vegetables. CONCLUSIONS: Near elimination of VAD in Malawi is a public health success story, but elevated levels of vitamin A among children suggests that vitamin A interventions may need modification.


Subject(s)
Carotenoids/analysis , Nutritional Status , Retinol-Binding Proteins/analysis , Retinyl Esters/analysis , Vitamin A/administration & dosage , Vitamin A/analysis , Adolescent , Adult , Child , Child, Preschool , Dietary Supplements , Female , Food, Fortified , Humans , Infant , Malawi/epidemiology , Male , Middle Aged , Vitamin A Deficiency/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...